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Abstract
We report calculated substantial enhancement of the second-harmonic generation (SHG)
in cuprous oxide crystals, resonantly hybridized with an appropriate organic material
(DCM2:CA:PS ‘solid state solvent’). The quadrupole origin of the inorganic part of the
quadrupole–dipole hybrid provides inversion symmetry breaking and the organic part
contributes to the oscillator strength of the hybrid. We show that the enhancement of the SHG,
compared to the bulk cuprous oxide crystal, is proportional to the ratio of the DCM2 dipole
moment and the effective dipole moment of the quadrupole transitions in the cuprous oxide.
It is also inversely proportional to the line-width of the hybrid and bulk excitons. The
enhancement may be regulated by adjusting the organic blend (mutual concentration of the
DCM2 and CA part of the solvent) and pumping conditions (varying the angle of incidence in
the case of optical pumping or populating the minimum of the lower branch of the hybrid in the
case of electrical pumping).

1. Introduction

Considerable attention has been paid to the relatively strong
optical second-harmonic generation (SHG) in thin film (D4h

symmetry) and bulk (Oh symmetry) cuprous oxide crystals.
This was first addressed in the pioneering work of Shen et al
(1996). The effect is attributed to the electric-quadrupole
h̄ω1S = 2.05 eV exciton effect. The quadrupole exciton has
very small oscillator strength but it possess rather narrow line-
width h̄γ1S so the effect is well pronounced when the exciting
laser energy is close to one h̄ω1S − h̄ω � h̄γ1S or two photon
resonance h̄ω1S − 2h̄ω � h̄γ1S. In the dipole approximation
this effect disappears (Atanasov et al 1994).

We propose to amplify the SHG characteristic of the 1S
quadrupole Wannier exciton (WE) in cuprous oxide by making
a hybrid with an organic Frenkel exciton (FE) (see the next
section for more details). The idea of resonant enhancement
of some nonlinear properties generic to semiconductor dipole-
allowed Wannier–Mott (WE) excitons was presented in the
pioneering work of Agranovich et al (1998) for layered
organic–inorganic heterostructures. It was also developed
for quantum wires and dots embedded into an organic shell

(Engelmann et al 1998, Gao et al 2004) or attached to
dendrimer structure (Huong and Birman 2000, 2003).

In our previous work (Roslyak and Birman 2007a) we
demonstrated considerable enhancement of another nonlinear
effect in cuprous oxide, photo-thermal bi-stability which
was measured in pure Cu2O crystals (Dasbach 2004). We
demonstrated a considerable enhancement in the hysteresis-
like region size (from μeV for bulk cuprous oxide to meV
for the hybrid). The enhancement was attributed to the large
oscillator strength of the hybrid exciton inherited from the
organic part and the still rather narrow line-width, of the
same order as the coupling. Analogous enhancements can be
expected for the SHG, which is the subject of this paper.

In section 2 we propose a pump–probe experiment to
reveal the SHG enhancement due to the resonant dynamical
hybridization and briefly discuss relevant quadrupole hybrid
exciton properties. In section 3 we address the question of how
this resonant1 enhancement depends on such parameters of the
system as oscillator strengths and damping of the FE and WE
constituting the hybrid. Using a classical model of nonlinear

1 The resonance occurs between the FE and WE energies.
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Figure 1. Schematic representation and the energy offset of a
possible experimental set-up to observe the enhanced SHG by the
quadrupole–dipole exciton. Here the inorganic Cu2O quantum well
provides the 1S quadrupole WE. The DCM2 part of the organic
‘solid state solute’ provides dipole-allowed FE (set of small arrows);
the PS host prevents wavefunction overlapping between organic and
inorganic excitons; CA under proper concentration allows tuning of
the excitons into the resonance.

coupled oscillators, we demonstrate that while the large ratio
of the hybrid oscillator strength suggests many orders of
magnitude enhancement it is actually somehow reduced by the
rather small coupling parameter and density of the FE.

Because the FE is dynamically brought into resonance
with the WE there is an important hybridization time τh

parameter. Hence, in section 4, we develop a more
sophisticated quantum mechanical model to address the
dynamics of the hybrid SHG. Namely we show that the signal
enhancement drastically depends on whether one probes the
system before or after the hybridization occurred.

2. Proposed experimental set-up for the SHG

In this work we adopt the concept of a layered organic–
inorganic heterostructure. The inorganic component of the
hybrid is a thin layer of Cu2O (quantum well, latter in the
text referred to as QW) grown upon a film of the organic
composite (see figure 1). Due to the small radius of both the
WE and FE exciton part of the hybrid one can neglect the
effect of confinement. In this case one cannot tune the two
types of excitons in resonance by adjusting the confinement
(Lw > aW

B ≈ to the cuprous oxide unit cell a = 4.6 Å). The
QW confinement just assures that the WE propagates along the
interface and is subjected to the electric field gradient of the FE
propagating along the adjacent chain of the DCM2 molecules.

To provide resonance between WE in cuprous oxide and
FE in the organic, we propose utilization of ‘solid state
solvation’ (SSS) of the DCM2 molecules2 in a transparent
polystyrene (PS) host doped with camorphic anhydride (CA)

2 [2-methyl-6-2-(2,3,6,7-tetrahydro-1H, 5H-benzo[i,j]-quinolizin-9-yl)-ethe-
nyl]-4H-pyran-4-ylidene] propane dinitritle.

(Bulovic et al 1999). The SSS is a type of solvatochromism
manifesting itself as a change in the spectral position of the
absorption/luminescence band due to change in the polarity
of the medium. The Förster dipole–dipole non-resonant
interaction between DCM2 and CA modifies the energy
structure of the molecules involved.

During the ‘slow’ phase (τs ≈ 3.3 ns) the energy of the
FE experiences3 a red shift linear with the CA concentration
due to a non-resonant dipole–dipole interaction with the CA
molecules. Note that our model capitalizes on the fact
that DCM2 molecules form a 2D layer rather than being
diluted in the PS:CA solvent which is the case for currently
manufactured optical light emitting devices (OLED). This
allows us to neglect the rather complicated problem of the
inhomogeneous broadening of the FE energy by utilizing a
mean field approximation4. For the mean field approximation
the red spectral shift of the FE energy in resonance with the
quadrupole WE can be accomplished with ρCA ≈ 22% CA
concentration.

To avoid complicated problems of time dependent
hybridization and stay within the analytical model framework,
we assume that the FE and WE are in exact resonance once
the DCM2 energy is in close proximity to the WE energy
i.e. h̄ωDCM2 − h̄ω1S � �k . We introduced the quadrupole–
dipole coupling parameter �k � 4 μeV (Roslyak and Birman
2007b) (see also appendix (A.1)). This resonant coupling gives
rise to the upper and lower branches of the quadrupole–dipole
hybrid (QDH) dispersion5: h̄ωu,l = h̄ω1S ± �k. To populate
both of the branches one needs a second pumping photon tuned
into resonance with the 1S transition.

The radiation field interacts through both dipole and
quadrupole parts of the hybrid. The dipole interaction can be
used to produce a linear response signal due to the pumping
(Roslyak and Birman 2007a). By using the nonlinear response
to the probe signal, the second harmonic can be generated
through the quadrupole part of the hybrid. Different SHG
regimes can be achieved by changing the timing between
pumping and probe signals (see section 4 for more details).

According to the selection rules for the quadrupole–
dipole hybrid, the pumping signal, running along the organic–
inorganic interface of the heterostructure, induces a linear
polarization in the z direction (Roslyak and Birman 2007b).
The probe signal induces a second order nonlinear response in
the cuprous oxide. This is perpendicular to the interface, and
defined by the second order polarization along the x direction
(see figure 1). The net polarization is given by a second rank
tensor through the following expression:

P(1)
z + P(2)

l= ĵ×x̂
= χ

(1)
i,z Ei + iχ(2)

l,i, j,x kx Ei E j . (1)

Here Ei , E j are the electric field of the pumping and probe
lasers correspondingly. The x component of the probe

3 In our case we define the FE as DCM2 excitation.
4 Indeed, in our simplified model the DCM2 molecules are not randomly
situated but rather form a uniform (homogeneous) thin layer near the interface.
Also the experimentally observed FE energy relaxation shows no significant
energy fluctuations. These experiments have been performed at MIT by
Dr Bulovic. The results are not officially published yet, but have been reported
in the MIT proceedings.
5 See the eigenvalues of the linearized system (4) or the Hamiltonian (8).
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signal wavevector is taken to be close to zero to avoid
possible interference in momentum conservation. For the
sake of simplicity we are going to omit x and l indexes
of the tensor keeping in mind that the wavevector of the
pump signal has only an x component and the SH signal
is perpendicular to it and the probe signal polarization:
iχ(2)

l,i, j,x kx = χ
(2)
i, j .

In this paper we develop both classical and quantum
mechanical models, which can be used to find a specific
form of the hybrid second order nonlinear susceptibility. In
section 3 we demonstrate that the second order nonlinearity
(generic to the cuprous oxide and introduced through a small
parameter λ) is enhanced due to the resonant quadrupole–
dipole hybridization with the organic (see (5)). In section 4
we develop the quantum theory of the enhanced SHG. It
allows the investigation of different regimes of the process
defined by the time ordering between the probe pulse and
the time when the FE and WE energies are close enough to
form the hybrid. We generalize the concept of the double-
sided Feynman diagrams (Mukamel 1995) to include non-
radiative processes for the energy exchange between DCM2
and CA as well as resonant QDH between DCM2 and cuprous
oxide.

3. Anharmonic coupled oscillators model

As a first step, we will use the simplest classical model
neglecting the non-local effects of the linear χ

(1)

i,z and nonlinear

susceptibility χ
(2)

l,i, j,x to describe the hybrid SHG. Namely,
we adopt an extension of the anharmonic oscillator model
(Bloembergen 1965, Mukamel 1995) generalized for the case
of resonant coupling between two distinct sets of oscillators.
This simplified picture only covers the case when the pumping
field is polarized along ẑ ‖ [001] axis (Ei = Ez) and we probe
the hybrid system (ω1S = ωF ) with a signal perpendicular
to the interface and polarized along ŷ ‖ [010] direction
(E j = Ey).

We consider the WE in cuprous oxide as an assembly
of oscillators with the oscillator strength per unit cell
given by fxz,k ∝ kx (see for example Moskalenko and
Liberman (2002)). The second set of the oscillators with the
oscillator strength given by f F corresponds to the FE in the
organic.

Treating the wavevector k as just another parameter6, the
polarization PW, PF due to WE and FE can be written in terms
of the effective electron–hole displacements X, Y as:

PW = N

aW
B S

fxz,k eX (2)

PF = ρDCM2 N

aF
BS

f FeY. (3)

6 In the text we are going to omit the index k unless we put an emphasis on it.

Here S is the area of the interface and aW
B , aF

B are the WE
and FE Bohr radius, e is the electron charge. The surface
density of the WE and FE excitons are N fxz,k /(aBS) and
ρDCM2 N f F/(aBS) correspondingly and N is the total number
of the oscillators. Here we also took into account the low
density (ρDCM2 = 0.05%) of the DCM2 molecules in the
organic to avoid the aggregation effect (Madigan and Bulovic
2003).

In the time frame of the hybridization τs − τh < t < τs,
the WE and FE energies are at perfect resonance. Hence, the
system of equations governing the oscillator dynamics can be
written in the form:

Ẍ + ω2
1S X + γ Ẋ − 2ω1S�k

h̄
Y − ω2

1SλX2 = 0

Ÿ + ω2
1SY + γ Ẏ − 2ω1S�k

h̄
X = e

m
Ei e

iωt .

(4)

The nonlinear factor ω2
1Sλ appears due to the probe signal.

It is defined such that λ has dimensions of reciprocal length
and is considered to be small in the sense that it is much
less than the reciprocal of the maximum displacement of
the FE (Y ) and WE (X ) oscillators. The exact value of
λ can be obtained either from an experiment or from the
microscopic quantum theory (see the next section for more
details).

The terms proportional to γ describe the QDH damping.
The terms proportional to 2ω1S�k/h̄ describe the quadrupole–
dipole coupling. Hence, the eigenvalues of the linearized
system of equations (4) give both branches of the QDH.

The system is driven dominantly by the light–dipole
interaction in the organic and the quadrupole–light interaction
is neglected (m is the electron mass).

Using standard perturbation theory with respect to the
small parameter λ in zero order (neglecting the quadratic term)
and combining equations (1), (2) and (4) one has the linear
response of the hybrid and bulk cuprous oxide given by the
following expressions:

χ
(1)
Hy (ω) = ρDCM2 N

aF
BS

f Fe2/m(ω2
1S − ω2 + iωγ )

(ω2
1S − ω2 + iωγ )2 − (2ω1S�k/h̄)2

χ
(1)
Cu2O(ω) = N

aW
B S

fxz,k e2/m

ω2
1S − ω2 + iγ

.

Including the nonlinear term as a source for the SHG to first
order in the perturbation parameter, there is a displacement at
2ω. The SHG response is given by a solution of the following
coupled system:

Ẍ + ω2
1S X + γ Ẋ − 2ω1S�k

h̄
Y − ω2

1SλX2
λ=0 = 0

Ÿ + ω2
1SY + γ Ẏ − 2ω1S�k

h̄
X = 0.

Using the definitions (1) and (2) one gets the following
nonlinear second order response function for the hybrid and

3
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bulk cuprous oxide correspondingly:

χ
(2)
Hy (2ω; ω,ω) = ρDCM2 N

aF
BS

× f Fe3/m2ω2
1Sλ(2ω1S�k/h̄)

((ω2
1S − (2ω)2 + i2ωγ )2 − (2ω1S�k/h̄)2)2

× (ω2
1S − ω2 + iωγ )2

(ω2
1S − ω2 + iωγ )2 − (2ω1S�k/h̄)2

χ
(2)

Cu2O(2ω; ω,ω)

= N

aW
B S

fxz,k e3/m2ω2
1Sλ

(ω2
1S − (2ω)2 + i2γ )(ω2

1S − ω2 + iγ )2
.

(5)

Straightforward comparison of the expressions above evinces
the resonant rise of the second order nonlinearity owing to
hybridization. There are several competing factors involved.
The enhancement by means of large oscillator strength ratio
f F/ fxz,k is reduced by the rather small coupling parameter �k

and small DCM2 density ρDCM2 (see more numerical details in
section 5).

4. Quantum theory of SHG due to the QDH

Although the system of nonlinear susceptibilities (5) in
principle solves the problem of SHG due to the hybrid it does
not clarify the origin of the nonlinearity λ. Also, such an
important parameter as the hybridization time τh is left out of
the classical description. Hence, in this section we propose a
unified quantum theory of the hybrid SHG.

The linear response of the hybrid is due to dipole
transitions from the ground |g〉 state7 to the FE |F〉 in the
organic and due to quadrupole transitions to the WE |1S〉
in the cuprous oxide. The nonlinearities are the result of
some intermediate inter-band transitions in the cuprous oxide
(Mukamel 1995).

In cuprous oxide the nearest state in energy to the
quadrupole ortho-exciton h̄ω1S(�

+
5 ) is the h̄ω2P (�−

4 ) dipole-
allowed excitonic band |2P〉, Eg > h̄ω2P > h̄ωF >

h̄ω1S . Hence it plays the main role in formation of the
nonlinear response and can be excited by a properly tuned
probe signal. We neglect the remaining inter-band and intra-
band8 transitions. Therefore, the states above form a complete
basis for the SHG problem:

|g〉, |1S〉, |F〉, |2P〉. (6)

Inversion symmetry of the DCM2 is also broken by the CA
induced local field and the interface effect. Therefore, unlike
in the classical model, the contribution from the organic to the
SHG has to be considered as well. But due to the smallness of
the symmetry breaking local field it only contributes a little to
the SHG enhancement.

Using the basis above let us introduce creation operators
for the FE and the 1S and the 2P WE exciton b† =
|F〉〈g|, B†

1S = |1S〉〈g|, B†
2P = |2P〉〈g| respectively. The

7 When no excitations are present in the system.
8 Due to the small radius of the quadrupole WE.

commutation algebra of the operators is presented in the
appendix (B.1).

The net polarization of the sample is defined as (Mukamel
1995):

P = μi
1S,k(B†

1S + B1S) + μi
2P(B†

2P + B2P)

+μi
F (b† + b) + μ

j
1S,2P(B†

1S B2P + B1S B†
2P). (7)

Here μi
1S,k = î · ẑkx Qx,z = 3×10−5(kx/k0,x)D is an effective

dipole moment (Moskalenko and Liberman 2002, Roslyak and
Birman 2007b) due to the quadrupole transitions associated
with the oscillator strength; k0 is the resonant wavevector for
bulk cuprous oxide (appendix (A.2)). The dipole moment of
the transitions from |1S〉 to 〈2P | is defined by (Artoni et al
2002, Elliott 1961):

(
μ

j
1S,2P

)2 = Ne2h̄2 f2P

SaW
B 2m	E2P

(
ĵ × x̂

)2 = 6 × 10−3 D2.

Finally, the DCM2 dipole moment of the transition from |g〉
to 〈F | per unit area of the interface is given by (Madigan and
Bulovic 2004):

(μi
F )2 = ρDCM2 Ne2h̄2 f F

SaF
B2m∗h̄ω1S

= 0.2D2.

Using equation (7) and the rotating wave approximation for the
resonant wavevector k, the hybrid Hamiltonian can be written
as:

H = h̄ωF b†b + h̄ω1S B†
1S B1S + E2P B†

2P B2P

+ �k

(
B†

1Sb + B1Sb†
)

+ μi
F

(
b† E†

i + bEi

)

+μi
1S,k

(
B†

1S E†
i + B1S Ei

)
+ μi

2P

(
B†

2P E†
i + B2P Ei

)

+ μ
j
1S,2P

(
B†

1S B2P E†
j + B1S B†

2P E j

)
. (8)

The linear response from both branches of the hybrid may
be observed by pumping the hybrid with two signals Ei ‖
ẑ ∝ eiωt . The first photon h̄ω = EDCM2 excites DCM2
molecules. During the time period τs −τh the system relaxes to
the FE exciton energy close to h̄ω1S thus providing resonance
between WE and FE. Then the second pumping photon h̄ω =
h̄ω1S enters and excites the quadrupole WE so that both
QDH branches are populated. The QDH exciton lives for τh

nanoseconds and then both branches of the hybrid relax to the
ground state, emitting photons of energy h̄ω1S ± �k .

Generalizing conventional double-sided Feynman dia-
grams (Mukamel 1995) to include the non-radiative processes,
the linear response from the QDH can be represented by the
following diagram:

(9)

4
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χ
(1)

i (ω, k) = μi
1S,0(B†

1S,0 + B1S,0) + μi
F (b†

0 + b0)

= (μi
F )2(h̄ω − h̄ω1S + ih̄γ ) + μi

Fμi
1S�k

(h̄ω − h̄ω1S + ih̄γ )2 − �2
k

+ c.c. (10)

On the diagram the wavy lines represent the incoming and
outgoing photons; the straight lines stand for the non-radiative
transitions. The diagram shows energy exchange between
photon–exciton and exciton–exciton as well as the time
separation between two pumping signals. Time increases
from bottom to the top of the diagram as for the conventional
Feynman diagram. The hybrid lifetime is denoted as τh = 1/γ

and the hybridization between FE and WE is denoted as ⊕.
In the derivation of the linear response χ

(1)

i (ω, k) we used
equation (7) along with solutions of the Heisenberg equations
of motion presented in the appendix B (B.2). Formally the
linear response can be written in terms of the hybrid Green’s
functions as:

χ
(1)

i (ω, k) =
∑

a,b={g,1S,F }
μi

abμ
i
ba Iab (ω)

I1S,g = IF,g = h̄ω − h̄ω1S + ih̄γ

(h̄ω − h̄ω1S + ih̄γ )2 − �2
k

I1S,F = �k

(h̄ω − h̄ω1S + ih̄γ )2 − �2
k

Iab = I 	
ba .

Here the dipole matrix elements in the corresponding basis (6)
are given by:

⎛
⎜⎝

0 μ1S μF 0
μ1S 0

√
μ1SμF 0

μF
√

μFμ1S 0 0
0 0 0 0

⎞
⎟⎠ .

Note that we neglected the non-resonant term associated with
ground state dipole moment of the organic μg .

The SHG is due to second order response E j ⊥ Ei ‖ z
and given by the last term in equation (7) and the solutions of
the equations of motion (B.2), (B.3). The first type of SHG
is formed when the branches of the hybrid interacts with the
|2P〉 level excited by the probe signal. Using all the diagram
conventions we adopted above, the diagram for this nonlinear
process is given below:

(11)

χ
(2)

i j (2ω; ω,ω) = μ1S,2P

(
B†

1S,0 B2P,1 + c.c.
)

= μi
2Pμ

j
1S,2P

(
μi

1S (h̄ω − h̄ω1S + ih̄γ ) + μi
F�k

)

(2h̄ω − h̄ω2P )
(
(h̄ω − h̄ω1S + ih̄γ )2 − �2

k

) + c.c.

(12)

Here the probe signal comes after the hybrid is formed: τ2P >

τs − τh.
Another second order nonlinear response can be formed if

the probe signal comes before the hybridization τ2P < τs − τh.
It can be represented by the following diagram:

χ
(2)
i j (2ω; ω,ω) = μ1S,2P(B†

1S,1 B2P,0 + c.c.)

= μi
2Pμ

j
1S,2P(μi

1S(2h̄ω − h̄ω1S + ih̄γ ) + μi
F�k)

(h̄ω − h̄ω2P)((2h̄ω − h̄ω1S + ih̄γ )2 − �2
k )

.

The Green’s function representation of the SHG due to
the second order response is given by the following
expression:

χ
(2)
i j (2ω; ω,ω) = μ

j
1S,2P

∑
a={g,1S,F,2P}

μi
a,1Sμ

i
2P,a

× [
Ia,1S (ω) Ia,2P (2ω) + I1S,a (2ω) I2P,a (ω)

]

I2P,g = 1

h̄ω − h̄ω2P
.

The dipole matrix elements on the basis (6) are given by:

⎛
⎜⎝

0 μ1S μF μ2P

μ1S 0
√

μ1SμF μ1S,2P

μF
√

μFμ1S 0 0
μ2P μ1S,2P 0 0

⎞
⎟⎠ .

According to the last term in the equation (7), the signal at
2h̄ω = h̄ω1S ± �k may generate a signal at h̄ω = h̄ω1S ± �k :

χ
(3)
i j (ω; 2ω,−ω)

= μi
2P(μ

j
1S,2P)2(2h̄ω − h̄ω1S + ih̄γ )

(h̄ω − h̄ω2P )2((2h̄ω − h̄ω1S + ih̄γ )2 − �2
k )

+ c.c.

This type of signal has been experimentally detected (Shen
et al 1996) in bulk cuprous oxide (�k = 0) when the
pumping signal was tuned to the wavelength between 12 285
and 12 195 Å. A strong SH signal was detected at 6096 Å
which has to be attributed not only to the narrow line-width of
the quadrupole exciton but to the fact that μ1S,2P � μ1S as
well. From the last expression it follows that in this case no

5
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increment in the outgoing signal can be expected due to the
hybridization effect.

The third order nonlinearity is responsible as well for
some small contribution to the SHG due to the non-zero ground
state dipole moment of the DCM2 molecules (Kishida et al
1994). In the local electric field created by the polar CA
molecules on the interface Eloc(0), the SH signal is due to
the third order susceptibility χ

(3)

i j (2ω; ω,ω, 0). The exact
expression in terms of the corresponding Green’s functions is
too lengthy to be listed here (Mukamel 1995), therefore we
provide numerical calculations of the total SHG including the
above correction in the next section.

5. Results and discussion

In order to make a numerical comparison of the hybrid and bulk
SHG the lifetime of the hybrid plays a major role. Considering
the bi-stability effect in the hybrid (Roslyak and Birman 2007a)
we assumed that the cuprous oxide has purity of 99.99%
with the reported line-width of h̄γ1S = 0.1 meV (picosecond
lifetime) (Shen et al 1996). Therefore the hybrid lifetime is
dominated by its inorganic part h̄γ ≈ h̄γ1S. To compensate
for such a large line-width we also assumed that the DCM2
is presented as a thin film embedded into PS host close to the
interface with the cuprous oxide. For the nonlinear absorption
experiment this assumption can be justified as it makes the
absorption length of the hybrid equal to the narrow region
around the interface, of the size of the hybrid itself. However,
there is a drawback in that model due to possible aggregation
of the DCM2.

Hence in this paper we adopted the picture of a disordered
organic and higher purity of the inorganic crystal. This will
bring the line-width and the coupling parameter to the same
order. For pure cuprous oxide crystal the lifetime of the
quadrupole 1S exciton is reported to be τ1S = 1.7 . . . 3.0 ns
(h̄γ = 1 . . . 0.5 μeV) (Dasbach 2004, Frohlich et al 2005,
Elliott 1961). Such higher purity crystals and thin films are
widely used in searching for BEC of excitons.

In this case the lifetime of the 1S quadrupole exciton is
mainly determined by the ortho–para exciton conversion. The
lifetime of the organic part of the hybrid is determined by the
time the excited DCM2 molecule takes to reach an equilibrium
with the bath of polar CA molecules. The lifetime for the
given concentration of the CA is reported to be 3.3 ns (Madigan
and Bulovic 2003, 2004). Because these processes are of the
same order, the effective lifetime of the hybrid is a non-trivial
combination of the effects described above and will be reported
elsewhere. Here we assume the simplest case of a non-coherent
lifetime of the hybrid h̄γ = 0.29 μeV (Roslyak and Birman
2007b).

The intensity of the second harmonic is proportional
to |χ(2)kx |2 (see for example (Haueisen and Mahr 1973)).
Therefore an important measurable quantity is the relative
value of nonlinear susceptibility |χ(2)kx | presented in
figure 2.

The SHG signal is split according to the response from the
lower and upper branch of the hybrid. Asymmetry between
these two branches is a result of quantum effects and not

Figure 2. Relative value of the nonlinear susceptibility in the case of
bulk cuprous oxide (dotted curves) and the quadrupole–dipole hybrid
(solid curves). The density of the disordered DCM2 is taken as
ρDCM2 = 0.005% while the CA density is ρCA = 22%. The
(a) represents moderate coupling �k = h̄γ1S = 0.29 μeV and
(b) corresponds to the strong coupling regime �k = 3.5 μeV. In the
last case the enhancement is evident and indicated by the different
scales for the bare cuprous oxide (left) and hybrid (right) SHG

(This figure is in colour only in the electronic version)

present in the classical anharmonic oscillator picture. We
also included the corrections due to the interface effect in the
organic in our numerical simulation.

For the sake of simplicity let us consider two distinct
cases. First, the pump laser is perpendicular to the interface.
The states up to ka = k0a are populated thermally. No
hybridization occurs and it is equivalent to the bulk case SHG
(see figure 2 dotted curve). The maximum power generated
by the second harmonic is proportional to the square of the
following expression:

|χ(2)
i j,max(2h̄ω = h̄ω1S)| = μ2Pμ1S,2P

h̄ω − h̄ω2P

μ1S,kkx

h̄γ1S
. (13)

The small relative value of the SHG is due to the narrowness
of the cuprous oxide quantum well.

6
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Second, the pump laser incidence angle is reduced to
acquire the wavevector k0a � ka. The maximum power
generated by the second harmonic is proportional to the square
of the following expression:

|χ(2)

i j,max(2h̄ω = h̄ω1S ± �k)| = μ2Pμ1S,2P

h̄ω − h̄ω2P

μF kx

αk h̄γ
. (14)

Here the incidence angle dependent coefficient αk = √
5 (see

figure 2(a)) for ka = 0.13 (�k = h̄γ = 0.29 μeV) and
αk = 2 for the maximum value of the coupling �k = 3.5 μeV
at ka = 1.57 (see figure 2(b)). Finally, comparing the last
expression (14) to that for bulk cuprous oxide (13) the second
order response of the hybrid is amplified by the factor:

(
μF

μ1S

h̄γ1S

αh̄γ

)2

.

Therefore the amplification can be adjusted by manipulating
the organic composition (DCM2 and CA densities) or changing
the pump laser incidence angle.

Finally, we would like to note that there is another merit
in using a hybrid structure for the SHG. Namely the fact that
optical pumping can be replaced by electrical pumping. For
this, the hybrid sample has to be placed between Alq3 and
a-NPD (Madigan and Bulovic 2004) semiconductor plates.
The bond structure and offset of these materials provide
electrons and holes to form the hybrid exciton on the interface.
Although, in this case, one can expect the SHG only from the
lower branch of the hybrid as the excitons are accumulated at
the minimum of the hybrid dispersion (Roslyak and Birman
2007b).

6. Conclusion

In this paper we addressed the possibility of enhancing the
SHG signal χ(2) generic to a cuprous oxide bulk crystal as
the lowest excitation in this material has a quadrupole origin.
To demonstrate the concept we proposed considering a pump–
probe experiment performed on cuprous oxide sandwiched
between the organic composite. An intense pump signal
excites one part of the organic known as DCM2 (FE). Non-
resonant (Förster) energy transfer in the organic layer (‘solid
state solvation’ effect) provides a dynamical red shift of the FE.
When the FE energy is close enough to the quadrupole-allowed
1S exciton in the adjacent cuprous oxide the quadrupole–
dipole hybridization occurs due to the FE induced gradient of
the electric field penetrating into the inorganic layer. The probe
signal is designed to reveal the SHG signal.

The resonant enhancement of the χ(2) occurs because the
hybrid exciton shares properties of both quadrupole WE (long
radiative lifetime) and organic FE (big oscillator strength). Its
quadrupole part allows χ(2) to be non-vanishing, while its FE
part provides the enhancement of the SHG signal compared to
the bare cuprous oxide crystal due to more efficient absorption
of the pump signal by means of the large oscillator strength of
the hybrid.

However, as we demonstrated in the classical coupled
oscillator model framework,the enhancement is determined not

only by the large ratio of the corresponding organic/inorganic
oscillator strengths but somehow quenched by the small
coupling parameter and low DCM2 density. By varying
those parameters the hybrid SHG signal may be enhanced
by orders of magnitude compared with the generic (cuprous
oxide) one.

To reveal the enhancement dependence on such an
important parameter of the hybrid as the hybridization time
τh we investigated a more sophisticated quantum theory. It
suggests that there is substantial difference in the hybrid SHG
signal provided one probes the system before or after the
hybridization occurred. In the first case the SH is generated
at ω2P/2 frequency. Hence it is vastly suppressed by the
short lifetime of the dipole-allowed 2P WE in cuprous oxide.
Nevertheless, if one probes the system after the hybridization
has happened, the SH is generated at ω1S/2 and is heightened
by the large oscillator strength of the hybrid and its small
damping coefficient.
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Appendix A

An explicit expression for the quadrupole–dipole coupling is
given below:

�k = 8
√

2π

(ε + ε̃) Lw

ke−kz′
sinh

( Lwk
2

)
(

1 + ( kLw
2π

)2
) Qxzμ

F
z

aF
BaW

B Lw
. (A.1)

Here aF
B, aW

B are the Bohr radii of the FE and WE exciton;
ε̃ and ε are the corresponding dielectric constants, z ′ is the
distance to the DCM2 layer, Lw is the quantum well width. The
quadrupole transition matrix element Qxz may be estimated
from the corresponding oscillator strength per unit cell through
the following identity (Moskalenko and Liberman 2002) and
depends on polarization of the pumping laser field:

fxz,k0 = 4πm Eg

3e2h̄2

(
aW

B

a

)3 (
z · k0,x · Qx,z

)2

fxz,k0‖[1,1,0] = 3.9 × 10−9

fxz,k0‖[1,1,1] = 1
3 3.9 × 10−9.

(A.2)

Here the energy gap of cuprous oxide is denoted as Eg =
2.173 eV; k0 = 2.62 × 105 cm−1 is the resonant wavevector;
a is the unit cell size; the unit vector in the pumping field
polarization is z.

7
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Appendix B

The non-zero commutator relations for the organic and
inorganic parts of the hybrid yield (Mukamel 1995):

[
B†

1S, B1S

]
= −1 + B†

2P B2P + b†b;
[

B†
1S, B2P

]
= B†

1S B2P;
[

B†
2P , B1S

]
= B†

2P B1S

[
B†

2P , B2P

]
= −1 + B†

1S B1S + b†b;
[
b†, B1S

] = b† B1S;
[
b†, B2P

] = b† B2P

[
b†, b

] = −1 + B†
2P B2P + B†

1S B1S;
[

B†
1S, b

]
= B†

1Sb;
[

B†
2P , b

]
= B†

2Pb.

(B.1)

In the TDHF approximate factorization for the averages, the
corresponding Heisenberg equations up to the second order in
the creation and annihilation operators are:

ih̄
dB†

1S

dt
= h̄ω1S B†

1S + �kb† − μF Ei B†
1Sb

+ μ1S,k Ei

(
1 − B†

2P B2P − b†b
)

− μ2P Ei B†
1S B2P + μ1S,2P E j B†

2P

ih̄
dB1S

dt
= −h̄ω1S B1S − �kb + μF E	

i b† B1S

− μ1S,k E	
i

(
1 − B†

2P B2P − b†b
)

+ μ2P E	
i B†

2P B1S − μ1S,2P E	
j B2P

ih̄
dB†

2P

dt
= h̄ω2P B†

2P − μF Ei B†
2Pb − μ1S,k Ei B†

2P B1S

+ μ2P Ei

(
1 − B†

1S B1S − b†b
)

+ μ1S,2P E j B†
1S

ih̄
dB2P

dt
= −h̄ω2P B2P + μF E	

i b† B2P + μ1S,k E	
i B†

1S B2P

− μ2P E	
i

(
1 − B†

1S B1S − b†b
)

− μ1S,2P E	
j B1S

ih̄
db†

dt
= EFb† + �k B†

1S + μF Ei

(
1 − B†

1S B1S − B†
2P B2P

)

− μ1S,k Ei b
† B1S − μ2P Ei b

† B2P

ih̄
db

dt
= −EFb − �k B1S − μF E	

i

(
1 − B†

1S B1S − B†
2P B2P

)

+ μ1S,k E	
i B†

1Sb + μ2P E	
i B†

2Pb.

Here we omitted the average brackets to shorten the notation.
In the exact resonance between FE and WE excitons h̄ω1S =
h̄ωF the linear approximation is straightforward. The creation
operators are ∝ eiωt and the system above is reduced to:

h̄ωB†
1S,0 = (h̄ω1S − ih̄γ ) B†

1S,0 + �kb†
0 + μ1S,k Ei − h̄ωB1S,0

= − (h̄ω1S + ih̄γ ) B1S,0 − �kb0 − μ1S,k E	
i

h̄ωB†
2P,0 = h̄ω2P B†

2P,0 + μ2P Ei − h̄ωB2P,0

= −h̄ω2P B2P,0 − μ2P E	
i

h̄ωb†
0 = (h̄ω1S − ih̄γ ) b†

0 + �k B†
1S,0 + μF Ei − h̄ωb0

= − (h̄ω1S + ih̄γ ) b0 − �k B1S,0 − μF E	
i .

The system above has a solution:

B†
2P,0 = μ2P Ei

h̄ω − h̄ω2P

B†
1S,0 = μ1S Ei (h̄ω − h̄ω1S + ih̄γ ) + μF�k Ei

(h̄ω − h̄ω1S + ih̄γ )2 − �2
k

b†
0 = μF Ei (h̄ω − h̄ω1S + ih̄γ ) + μ1S�k Ei

(h̄ω − h̄ω1S + ih̄γ )2 − �2
k

.

(B.2)

The SHG is due to the response to the induced polarization and
is ∝ ei2ωt :

2h̄ωB†
1S,1 = (h̄ω1S − ih̄γ ) B†

1S,1 + �kb†
1 + μ1S,2P E j B†

2P,0

2h̄ωB1S,1 = (h̄ω1S + ih̄γ ) B1S,1 + �kb1 + μ1S,2P E	
j B†

2P,0

2h̄ωB†
2P,1 = h̄ω2P B†

2P,1 + μ1S,2P E j B†
1S,0

2h̄ωB2P,1 = h̄ω2P B2P,1 + μ1S,2P E	
j B†

1S,0

2h̄ωb†
1 = (h̄ω1S − ih̄γ ) b†

1 + �k B†
1S,1

2h̄ωb1 = (h̄ω1S + ih̄γ ) b1 + �k B1S,1.

The system has a solution:

B†
2P,1 = μ1S,2P E j B†

1S,0

2h̄ω − h̄ω2P

B†
1S,1 = μ1S,2P E j (2h̄ω − h̄ω1S + ih̄γ ) B†

2P,0

(2h̄ω − h̄ω1S + ih̄γ )2 − �2
k

b†
1 = μ1S,2P E j�k B†

2P,0

(2h̄ω − h̄ω1S + ih̄γ )2 − �2
k

.

(B.3)

These solutions are implemented in the main text to calculate
the linear and nonlinear responses of the hybrid.
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